Further Kinematics - Answers

June 2017 Mathematics Advanced Paper 1: Mechanics 1

Question Number	Scheme	Marks
7(a)	$\tan\theta = \frac{2}{9} \theta = 12.5^{\circ}$ bearing 103°	M1 A1 A1 (3)
(b) (i) (ii)	$\mathbf{p} = (9\mathbf{i} + 10\mathbf{j}) + t(9\mathbf{i} - 2\mathbf{j})$ $\mathbf{q} = (\mathbf{i} + 4\mathbf{j}) + t(4\mathbf{i} + 8\mathbf{j})$	M1 A1 A1 (3)
(c)	$\overrightarrow{QP} = (8+5t)\mathbf{i} + (6-10t)\mathbf{j}$	M1 A1 (2)
(d)	$D^{2} = (8+5t)^{2} + (6-10t)^{2}$ = 125t ² - 40t + 100 100 = 125t ² - 40t + 100 0 = 5t(25t - 8) t = 0 or 0.32	M1 A1 M1 A1 A1 (6) 14
-	Notes	
7(a)	M1 for $\tan\theta = \pm \frac{2}{9}$ or $\pm \frac{9}{2}$ or use $\sin\theta$ or $\cos\theta$ First A1 for $\theta = \pm 13^{\circ}$ or $\pm 77^{\circ}$ or $\pm 12.5^{\circ}$ or $\pm 77.5^{\circ}$ or better	
	Second A1 for 103°	
7(b)	M1 for clear attempt at $\mathbf{p} = (9\mathbf{i} + 10\mathbf{j}) + t(9\mathbf{i} - 2\mathbf{j})$ or $\mathbf{q} = (\mathbf{i} + 4\mathbf{j}) + t(4\mathbf{i} + 8\mathbf{j})$ (Allow slips but must be a '+' sign and $\mathbf{r} + t\mathbf{v}$)	
(i)	First A1 for $\mathbf{p} = (9\mathbf{i} + 10\mathbf{j}) + t(9\mathbf{i} - 2\mathbf{j})_{0e}$	
(ii)	Second A1 for $\mathbf{q} = (\mathbf{i} + 4\mathbf{j}) + t(4\mathbf{i} + 8\mathbf{j})$ oe	
7(c)	M1 for $\mathbf{p} - \mathbf{q}$ or $\mathbf{q} - \mathbf{p}$ with their \mathbf{p} and \mathbf{q} substituted A1 for correct answer $\overrightarrow{QP} = (8+5t)\mathbf{i} + (6-10t)\mathbf{j}$ (don't need \overrightarrow{QP} but on R.H.S must be identical coefficients of \mathbf{i} and \mathbf{j} but allow column vectors)	
7(d)	First M1 for attempt to find QP or QP^2 in terms of <i>t only</i> , using correct formula First A1 for a correct expression (with or without $\sqrt{125t^2 - 40t + 100}$ Second M1 for $\sqrt{(3 \text{ term quadratic})} = 10$ or $(3 \text{ term quadratic}) = 100$. Third M1 for quadratic expression = 0 and attempt to solve (e.g. factorising or using formula) Second A1 for $t = 0$ (if they divide by <i>t</i> and lose this value but get 0.32, M1A0A1) Third A1 for $t = 0.32$ oe	

Question Number	Scheme	Ma	rks
1(a)	$\tan\theta = \frac{5}{20}$	M1	
	$\theta = 14.036.^{0}$	Al	
	$\theta = 104^{\circ}$ nearest degree	Al	(3)
(b)	p = 400i + t(15i + 20j)	M1 A1	
	$\mathbf{q} = 800\mathbf{j} + t(20\mathbf{i} - 5\mathbf{j})$	A1	(3
(c)	Equate their j components: $20t(\mathbf{j}) = (800 - 5t)(\mathbf{j})$	M1 A1	
	t = 32	MI	
	s = 800 j + 32(20i - 5j)	A1	(4)
	= 640i + 640j		10
1(a)	Notes		
1(a)	Allow column vectors throughout		
	M1 for $\tan\theta = \pm \frac{5}{20}$ or $\pm \frac{20}{5}$ (or any other complete method)		
	First A1 for $\pm 14.04^{\circ}$ or $\pm 75.96^{\circ}$		
	Second A1 for 104°		
1(b)	M1 for clear attempt at either p or q (allow slip but $t \text{ must}$ be attached		
(i)	to the velocity vector and position vector and velocity vector must be		
(ii)	paired up correctly)		
	First A1 $400\mathbf{i} + t(15\mathbf{i} + 20\mathbf{j})$ " \mathbf{p} =" not needed but must be clear it's P		
	Second A1 800 \mathbf{j} + $t(20\mathbf{i}-5\mathbf{j})$ " \mathbf{q} =" not needed but must be clear it's Q		
1(c)	First M1 for equating their j components; allow j 's on both sides		
	First A1 for $t = 32$		
	Conserved NATE in domain doma from socio attentino a discin a secondare inter di sino en foreme	1	
	Second M1 <u>independent</u> for substituting their t value into their \mathbf{q} from (b)		

Question Number	Scheme	Ма	rks
6(a)	$\mathbf{r} = (-3\mathbf{i} + 4\mathbf{j}) \mathbf{m}$	B1	(1)
(b)	3.4 = 2T - 3 or $-12 = 4 - 5T$	M1 A1	
	T = 3.2	Al	(3)
(c)	$\mathbf{r} = (-3\mathbf{i} + 4\mathbf{j}) + t(2\mathbf{i} - 5\mathbf{j})$	MI	(2)
	$\mathbf{v} = (2\mathbf{i} - 5\mathbf{j})$	A1	
	speed = $\sqrt{(2^2 + (-5)^2)} = \sqrt{29} = 5.4 \text{ m s}^{-1}$ or better	M1 A1	(4)
Alt (c)			
/m (t)	$ \mathbf{s} = \sqrt{6.4^2 + (-16)^2} = 17.23$	M1 A1	
	$\therefore \text{ speed} = \frac{17.23}{3.2} = 5.4 \text{ or better}$	M1 A1	(4)
	Notes		
6(a)	Allow column vectors throughout. B1 for $(-3i+4j)$ (m)		
(b)	M1 for a clear attempt at either 3.4 (i)= $(2T-3)$ (i) or $-12(j) = (4-5T)$ (j) First A1 for a correct equation (either) without i's and j's A1 for 3.2 oe N.B. $T = \frac{6.4i-16j}{2i-5j} = 3.2$ scores M1A1A1 <u>BUT</u> if RHS is not a single number, then M0. Also, if they get 3.2 and another value and don't clearly choose 3.2 then A0		

(c)	First M1 for a complete method for finding v	
	e.g. $\mathbf{r} = (-3\mathbf{i} + 4\mathbf{j}) + t(2\mathbf{i} - 5\mathbf{j})$ so $\mathbf{v} = 2\mathbf{i} - 5\mathbf{j}$	
	OR: $\mathbf{v} = \frac{(3.4\mathbf{i} - 12\mathbf{j}) - (-3\mathbf{i} + 4\mathbf{j})}{\text{their } T}$	
	OR: $\mathbf{v} = \frac{d\mathbf{r}}{dt} = 2\mathbf{i} - 5\mathbf{j}$	
	First A1 for $2i-5j$; M1A1 can be awarded for $2i-5j$ only.	
	Second M1 for attempt to find magnitude of their v, i.e. $\sqrt{2^2 + (-5)^2}$	
	Second A1 for $\sqrt{29}$ or 5.4 or better	
	OR	
	First M1 for attempt to find distance travelled:	
	$d = \sqrt{(-3 - 3.4)^2 + (412)^2}$	
	First A1 if correct	
	Second M1 for their d / their T	
	Second A1 for $\sqrt{29}$ or 5.4 or better	

May 2014 Mathematics Advanced Paper 1: Mechanics 1

Question Number	Scheme	Marks
5a	$\mathbf{F} = m\mathbf{a} : \ 3\mathbf{i} - 2\mathbf{j} = 0.5\mathbf{a}$	M1
	$a = 6\mathbf{i} - 4\mathbf{j}$	A1
	$ a = \sqrt{6^2 + (-4)^2} = 2\sqrt{13} \text{ (m s}^{-2}) \text{ **}$	M1A1 (4)
b	y = u + at; y = (i + 3i) + 2(6i - 4i)	M1A1 ft
	v = u + at; v = (i + 3j) + 2(6i - 4j) = 13i - 5j m s ⁻¹	A1
		(3)
с	Distance = $2 \mathbf{v} = 2\sqrt{4+1} = 2\sqrt{5} = 4.47$ (m)	M1A1
		(2)
d	When $t = 3.5$, velocity of <i>P</i> is $(i+3j)+3.5(6i-4j)=22i-11j$	M1A1 ft
	Given conclusion reached correctly. E.g. $22i - 11j = 11(2i - j)$	A1 (3)
		[12]

Notes for Question 5

Question 5(a)

Either:

First M1 for use of $\mathbf{F} = m \mathbf{a}$ First A1 for $\mathbf{a} = 6\mathbf{i} - 4\mathbf{j}$ Second M1 for $a = \sqrt{(6^2 + (-4)^2)}$ (Allow $\sqrt{(6^2 + 4^2)}$) Second A1 for $a = 2\sqrt{13}$ (ms⁻²) **Given answer**

Or:

First M1 for $F = \sqrt{(3^2 + (-2)^2)}$ (Allow $\sqrt{(3^2 + 2^2)}$) First A1 $F = \sqrt{13}$ Second M1 for $\sqrt{13} = 0.5 a$ Second A1 for $a = 2\sqrt{13}$ (ms⁻²) **Given answer**

Question 5(b)

M1 for (i + 3j) + (2 x their a)First A1 ft for a correct expression Second A1 for 13i - 5j; isw if they go on to find the speed

Question 5(c)

M1 for $2\sqrt{2^2 + (-1)^2}$ or $\sqrt{4^2 + (-2)^2}$ A1 for $2\sqrt{5}$ or $\sqrt{20}$ or 4.5 or 4.47 or better

Question 5(d)

M1 for $(\mathbf{i} + 3\mathbf{j}) + (3.5 \text{ x their } \mathbf{a})$, or possibly, their $(\mathbf{b}) + (1.5 \text{ x their } \mathbf{a})$ First A1 ft for a correct expression *of form a* $\mathbf{i} + b\mathbf{j}$ Second A1 for given conclusion reached correctly *e.g.* 22 \mathbf{i} -11 \mathbf{j} =11(2 \mathbf{i} - \mathbf{j}) or **Given answer** May 2013 Mathematics Advanced Paper 1: Mechanics 1

Question Number	Scheme	Marks
7.		
(a)	$t = 0$ gives $\mathbf{v} = \mathbf{i} - 3\mathbf{j}$	B1
	speed = $\sqrt{1^2 + (-3)^2}$	M 1
	$=\sqrt{10} = 3.2$ or better	A1
		(3)
(b)	$t = 2$ gives $\mathbf{v} = (-3\mathbf{i} + 3\mathbf{j})$	M1
	Bearing is 315°	Al
		(2)
(c)(i)	$1-2t=0 \Longrightarrow t=0.5$	M1 A1
(ii)	-(3t-3) = -3(1-2t)	M1 A1
	Solving for t	DM 1
	t = 2/3, 0.67 or better	A1
		(6)
		[11]
	Notes for Question 7	•
	B1 for i – 3j.	
Q7(a)	M1 for $\sqrt{(\text{sum of squares of cpt.s})}$	
_	A1 for $\sqrt{10}$, 3.2 or better	
Q7(b)	M1 for clear attempt to sub $t = 2$ into given expression.	
Q/(b)	A1 for 315.	
	(i) First M1 for $1 - 2t = 0$.	
	First A1 for $t = 0.5$.	
	N.B. If they offer two solutions, by equating both the i and j	
	components to zero, give M0.	
Q7(c)	(ii) First M1 for $\frac{1-2t}{3t-3} = \pm (\frac{-1}{-3})$ o.e. (Must be an equation in t	
	only)	
	First A1 for a correct equation (the + sign)	
	Second M1, dependent on first M1, for solving for t.	
	Second A1 for 2/3, 0.67 or better.	

Jan 2013 Mathematics Advanced	Paper 1: Mechanics 1
-------------------------------	----------------------

6.(a)	$\frac{(i-4j)-(4i-8j)}{0.5};(\pm 6i \pm 8j)$	MI AI
	$\sqrt{(\pm 6)^2 + (\pm 8)^2} = 10$	M1 A1 (4
	$\mathbf{r} = (4\mathbf{i} - 8\mathbf{j}) + t(-6\mathbf{i} + 8\mathbf{j})$	M1
(b)	=(4i - 8j) - 6ti + 8tj	
	$=(4-6t)\mathbf{i} + (8t-8)\mathbf{j} *$	A1 (
	At 10 am, $r = -2i$	M1 A1
(c)	At 10.30 am, $r = -5i + 4j$	A1
	$\mathbf{l} = k\mathbf{i}, \ k < -2$	DM1
	k = -5 - 4 = -9	
	l = -9i	A1 (5
		1

a) $\arctan \frac{7.5}{12} = 32^{\circ}$	Marks M1 A1	5
a) $\arctan \frac{7.5}{1.5} = 32^{\circ}$	MLAI	
12 Bearing is 302 (allow more accuracy)	A1	(3)
b) $s = 40i - 6j + t(-12i + 7.5j)$	M1 A1	(2
c) $t = 3$, $\mathbf{s} = 4\mathbf{i} + 16.5\mathbf{j}$ $\mathbf{s} - \mathbf{b} = -3\mathbf{i} + 4\mathbf{j}$ $SB = \sqrt{((-3)^2 + 4^2)} = 5 \text{ (km)}$	M1 M1 DM1 A1	(4
d) Equating i components 40-12t = 7 or $-33+12t = 0t = 2\frac{3}{4}$	M1 A1	
When $t = 2\frac{3}{4}$, $\mathbf{s} = (7\mathbf{i}) + 14\frac{5}{8}\mathbf{j}$	М1	
0	A1	(4 [13
	b) $\mathbf{s} = 40\mathbf{i} - 6\mathbf{j} + t(-12\mathbf{i} + 7.5\mathbf{j})$ c) $t = 3$, $\mathbf{s} = 4\mathbf{i} + 16.5\mathbf{j}$ $\mathbf{s} - \mathbf{b} = -3\mathbf{i} + 4\mathbf{j}$ $SB = \sqrt{((-3)^2 + 4^2)} = 5 \text{ (km)}$ d) Equating \mathbf{i} components 40 - 12t = 7 or -33 + 12t = 0 $t = 2\frac{3}{4}$	b) $\mathbf{s} = 40\mathbf{i} - 6\mathbf{j} + t(-12\mathbf{i} + 7.5\mathbf{j})$ M1 A1 c) $t = 3$, $\mathbf{s} = 4\mathbf{i} + 16.5\mathbf{j}$ M1 $\mathbf{s} - \mathbf{b} = -3\mathbf{i} + 4\mathbf{j}$ M1 $SB = \sqrt{((-3)^2 + 4^2)} = 5$ (km) M1 d) Equating \mathbf{i} components 40 - 12t = 7 or $-33 + 12t = 0$ M1 $t = 2\frac{3}{4}$ M1 A1 When $t = 2\frac{3}{4}$, $\mathbf{s} = (7\mathbf{i}) + 14\frac{5}{8}\mathbf{j}$ M1 $SB = 2\frac{1}{8}$ (km) 2.125, 2.13

May 2012 Mathematics Advanced Paper 1: Mechanics 1

Question 6(a)

Question 6(b)

M1 for a clear attempt at $(40\mathbf{i} - 6\mathbf{j})+t(-12\mathbf{i} + 7.5\mathbf{j})$ A1 for any correct expression

Question 6(c)

First M1 is really B1 for $4\mathbf{i} + 16.5\mathbf{j}$ (seen or implied but can be in unsimplified form) Second M1 is for a subtraction, $\mathbf{s} - \mathbf{b}$ or $\mathbf{b} - \mathbf{s}$. Third DM1, dependent on second M1, for finding magnitude of their $\mathbf{s} - \mathbf{b}$ or $\mathbf{b} - \mathbf{s}$ A1 for 5

Question 6(d)

First M1 for equating **i**-component of their answer in part (b) to 7 or the **i**-component of their $\mathbf{s} - \mathbf{b}$ or $\mathbf{b} - \mathbf{s}$ to zero

First A1 for 2.75 cao Second M1 (independent) for attempt to find **j**-component of their **s** at their t = 2.75Second A1 2.125 or 2.13 cao Jan 2012 Mathematics Advanced Paper 1: Mechanics 1

8.

Question Number	Scheme	Marks	
7 (a)	$\sqrt{((-4)^2 + 8^2)} = \sqrt{80}$ (km h ⁻¹) accept exact equivalents or 8.9 or better	M1 A1	
	$\mathbf{p} = (2\mathbf{i} - 8\mathbf{j}) + t(-4\mathbf{i} + 8\mathbf{j})$	B1	(2)
(c)	Equating j components -8+8t=12-8t	M1 A1	(1)
	$t = \frac{5}{4} \text{ oe}$	Al	
(d)	Using their <i>t</i> from (c) to find the i -cpts of p and q and subtract them	M1	(3)
	$10\frac{1}{2} - (-3) = 13\frac{1}{2}$ (km)	A1 ft A1	
	22		(3) 9

May 2011 Mathematics Advanced Paper 1: Mechanics 1

-	
\mathbf{n}	
ч	
-	

Question Number	Scheme	Marks
7. (a)	$\tan\theta = \frac{3}{4}$; bearing is 37° (nearest degree)	M1; A1 (2)
(b) (i) (ii) (iii)	p = (i + j) + t(2i - 3j) q = (-2j) + t(3i + 4j) PQ = q - p = (-i - 3j) + t(i + 7j)	M1 A1 A1 M1 A1
(c) (i)	-1+t=0 t=1 or 3pm 1+t=(-2+7t)	(5) M1 A1
(ii)	-1+t = -(-3+7t) $t = \frac{1}{2}$ or 2.30 pm	M1 A1 (4) 11

Jan 2011 Mathematics Advanced Paper 1: Mechanics 1

1	Λ	
т	U.	

•			
	Question Number	Scheme	Marks
	4. (a)	speed = $\sqrt{2^2 + (-5)^2}$ = $\sqrt{29}$ = 5.4 or better	M1
		$=$ $\sqrt{29} = 5.4$ or better	A1 (2)
	(b)	((7i+10j)-(2i-5j))/5 = $(5i+15j)/5 = i+3j$	M1 A1
		=(5i + 15j)/5 = i + 3j	A1
		$\mathbf{F} = m\mathbf{a} = 2(\mathbf{i} + 3\mathbf{j}) = 2\mathbf{i} + 6\mathbf{j}$	DM1 A1ft
			(5)
	(c)	$\mathbf{v} = \mathbf{u} + \mathbf{a}t = (2\mathbf{i} - 5\mathbf{j}) + (\mathbf{i} + 3\mathbf{j})t$	M1
		$\mathbf{v} = \mathbf{u} + \mathbf{a}t = (2\mathbf{i} - 5\mathbf{j}) + (\mathbf{i} + 3\mathbf{j})t$ (-5 + 3t)j	A1
		Parallel to $i \Rightarrow -5 + 3t = 0$	M1
		t = 5/3	A1
			(4) [11]

May 2010 Mathematics Advanced Paper 1: Mechanics 1

11.				
	Question Number	Scheme	Marks	
	Q1	(-4i - 7j) = r + 4(-3i + 2j) r = (8i - 15j)	M1 A1 A1	
		$ \mathbf{r} = \sqrt{8^2 + (-15)^2} = 17 \text{ m}$	M1 A1 ft	
				[5]

Jan 2010 Mathematics Advanced Paper 1: Mechanics 1

Question Number	Scheme	Mark	s
Q7.	(a) $\mathbf{v} = \frac{21\mathbf{i} + 10\mathbf{j} - (9\mathbf{i} - 6\mathbf{j})}{4} = 3\mathbf{i} + 4\mathbf{j}$ speed is $\sqrt{(3^2 + 4^2)} = 5 (\text{km h}^{-1})$	M1 A1 M1 A1	(4)
	(b) $\tan \theta = \frac{3}{4} (\Rightarrow \theta \approx 36.9^{\circ})$ bearing is 37, 36.9, 36.87,	M1 A1	(2)
	(c) $\mathbf{s} = 9\mathbf{i} - 6\mathbf{j} + t(3\mathbf{i} + 4\mathbf{j})$ = $(3t+9)\mathbf{i} + (4t-6)\mathbf{j}$ * cso	M1 A1	(2)
	(d) Position vector of S relative to L is $(3T+9)\mathbf{i} + (4T-6)\mathbf{j} - (18\mathbf{i}+6\mathbf{j}) = (3T-9)\mathbf{i} + (4T-12)\mathbf{j}$ $(3T-9)^2 + (4T-12)^2 = 100$ $25T^2 - 150T + 125 = 0$ or equivalent $(T^2 - 6T + 5 = 0)$	M1 A1 M1 DM1 A1	
	T = 1, 5	A1	(6) [14]